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Proof Details

We give proofs of the formal statements in the paper.

Proof of Theorem 1. Let F' = (A, R) be an AF, m a map-
ping on A, and ' = m(F) be the clustered AF according to
m. Let E € o(F). It remains to show that E =m(E) e

6(F). For o = cf, suppose E ¢ cf(F ) By definition, there
are ¢ and b in single(A) N E st. (a,b) € R. This implies
that there are a and b in E with m(a) = a and m(b) = b
and (a,b) € R (since both @ and b are singleton clusters).
This contradicts I being conflict-free. We conclude that
E e Ef(ﬁ) For o = adm, similarly as before suppose that
E ¢ adm(F). By definition, either (i) E ¢ cf( ), or (ii)
there is an @ € smgle(A) N E with (b a) € R s.t. there is

no ¢ € E with (¢,b) € R. If E ¢ ¢f(F), we arrive at a
contradiction as above (E would not be conflict-free). Sup-
pose (ii) holds. Then there is an a € E with m(a) = a.

Since || = 1, it follows that there is a b € bs.t. (b,a) € R
(one argument in the cluster must attack a). Since, by our
supposition, there is no ¢ € E that attacks b in F, it follows
that there is no ¢ € E with (¢,b) € R (otherwise such a ¢
would be part of some cluster in E and the attack, as well).
This contradicts E ¢ adm(F). We infer that £ € adm(F).
For o = stb, similarly as before suppose that £ ¢ stb(F).
As above, we can conclude that £ € ¢f{(F'). We show that

E satisfies the two remaining conditions of sth extensions,
by supposing that they do not hold and deriving a contradic-

tion. Suppose there is a b ¢ E and there is no & € E with
(d,b) € R. We directly arrive at a contradiction: there must
beab e bs.t.b¢ E and there is no a € E with (a, b) €ER
(otherwise there would be an & € F with (a, b) € R). Fi-
nally, assume that E does not attack an a € E. Suppose
that there is a b € single(E) and (a,b) € R (which would
contradict F being stable, thiArd condition of sfb). If there

is no clustered argument in £ that attacks & in F' then no
argument in E attacks any argument in a in F. Since E
is stable in F', this implies that @ C E (all arguments in a
are not attacked by E and must then be part of E). Since

(4,b) € R and |b] = 1, we infer that one argument a €

attacks b in F (one argument in a must attack b since b is a
singleton). Since the b is a singleton and all of G are in E we

infer that E attacks bin F. But then E is not conflict-free,
since b € F implies b € FE, a contradiction. We infer that

E € stb(F). O
Pmof of Theorem 2. Let 0 = cf Suppose that there is an
E € ¢f(F) and that E ¢ 7(F). We show that there is
an AF F with F € m~'(F) and an E € ¢f(F) with

m(E) = E (contradicting the claim that 7 abstracts conflict-
free sets). Construct an AF F' = (A, R) as follows. Let
A be the domain of m. Define R’ = {(z,y) | (Z,9) €
R,z e m™(&),y € m~(§)} (ie., R contains an attack
between z and y iff the correspondmg clusters £ and ¢ at-
tack in R) For each @ € A choose one ¢, € a (recall
that we assume finite sets), and let £ = {¢c, | a € E}.
Define R = {(cz,¢y) | covey € E}. Set R = R'\ R
(i.e., we remove from R’ all attacks between arguments in
E). We show that m(F) = F. From construction we im-
mediately get m(A) = A. For (z,y) € R, we infer that
(m(z),m(y)) € R: if (z,y) € R then (z,y) € R', im-
plying that (m(z),m(y)) € R. Thus, m(R) C R. Let
(2,9) € R. Consider first the case that & # 7.

e If at most one of £ or ¢ is in E it follows that for all x € &
and y € § we have (x,y) € R (this attack is in R’ and not
in R).

e Consider the case that both of Z or jj are in . If {Z, 7} C
single(A), then (2,9) ¢ R (since E € ¢f(F)). Consider
the case that one of Z or ¢ is a non-singleton cluster in F’
say |Z| > 1. Then there is an z € & with  # ¢,. Let
y € §. It follows that (z,y) ¢ R, and, thus, (z,y) € R.

If & = §) (self-attack (2, %) € R), then one can reason analo-
gously: if # ¢ F, then for all z € X we have (z,z) € R. If
& € E, then Z is not a singleton. Again there is some x € &
with z # ¢, and (z, z) € R. We conclude that m(R) = R,
and, in turn, m(F) = F.

It remains to show that £/ € ¢f(F). Letx,y € E. By con-
struction of R it holds that (z, y) € R, and, thus, (z,7y) ¢ R.
Finally for conflict-free sets, m(E) = E, by construction.



Let 0 = adm. Assume that £ € adm(F'). Suppose that
E ¢ #(F). Constructan AF F' = (A, R) in a similar fashion
as before. Let R’ be as in the proof for ¢f, and choose argu-
ments ¢, for & € A as before. Again, let E = {¢, | @ € E}.
Define Ry = {(z,¢,) | * € A,|§| > 1,¢, € E} (at-
tacks onto members of E whose cluster is non-singleton)
and Ry = {(cq,¢y) | cz,cy € E} (attacks inside E).
Let R = R\ (R U Ry). We again get immediately that
m(A) = A. Let (z,y) € R. Since (z,y) € R’ we infer that
(m(z), m(y)) € R, implying m(R) C R. Let (&,7) € R.
If g ¢ E, it follows that for all z € # and y € § we have
(z,y) € R. Letg € E. Consider the following subcases.

e @ € E. Consider again subcases depending which is a
singleton cluster.

|Z] = 1 and |g| = 1: if both clusters & and § are single-

tons in F', then (Z, 7)) ¢ R (since E € ¢f(F)).

|#] > 1 and |§| = 1: then for an = € & with x # c,,

and m(y) = ¢, we have (z,y) € R ((z,y) is not in Ry

or Ry).

|#| = 1 and |g| > 1: then foray € y with y # ¢, and

m(x) = &, we have (z,y) € R ((x,y) is not in Ry or

Ry).

|Z] > 1 and |g| > 1: then for z € £ and y € § we have

(z,y) € Rwithx # ¢, and y # ¢,

o i ¢ E. Consider again subcases depending which is a
singleton cluster.

|Z] = 1 and |g| = 1: then for z and y with m(z) = &

and m(y) = ¢ we have (z,y) ¢ Ry U Rs.

|#| > 1 and |g| = 1: similar as the previous case (just

take an arbitrary x € ).

|£] = 1land |g| > 1: lety € ¢ withy # ¢, and z s.t.

m(z) = #. It follows that (z,y) ¢ Ry URa (we choose

a different 3y € §) than the one removed by R;).

|£] > 1 and || > 1: similar as the previous case.

Thus, R € m(R), implying m(R) = R. It remains to show
that £ € adm(F). It follows that E € ¢f(F) (similar ar-
guments as above). Suppose that £ does not defend itself.
Then there is an ¢ € F with some (b,a) € R such that
there is no ¢ € E with (¢,b) € R. If, for m(a) = a,
we have |a| > 1, then (b,a) ¢ R (since (b,a) € Ry).
If |a| = 1, then there is a b with m(b) = b such that
(b,a) € R. This implies (by & € E and E € adm(F))
that there is a ¢ € F such that (¢, 13) € R. By construction,
c. € E. Since (c.,b) ¢ R1 U R, (by b ¢ E), it follows that
(ce,b) € R, contradicting that E' ¢ adm(F"). It follows that
E € adm(E), and m(E) = E € 7(F).

Let ¢ = stb. Assume that E ¢ stb(F). Suppose that
E ¢ #(F). Construct an AF F = (A, R) in a similar fash-
ion as before. Let R’ be as in the proof for cf, and choose
arguments ¢, for & € A as before. Let B = {¢c, | a €
EYU{z |z € &,& € Est. }(y,2) € Rwithj € E}
(include here also full clusters that are unattacked or only

attacked from outside £). Define R = {(z,y) | z,y € E}.

SetR=R' \E (i.e., similar as in the proof for cf, we remove
from R’ all attacks between arguments in E'; however note

that E is different). We now prove that m(F) = E holds.

We infer that m(A4) = A, by construction. First, similarly
as above, assume that (z,y) € R. We have (z,y) € R’

Then (&,7) € R for m(x) = & and m(y) = §. This implies
that m(R) C R. The other direction requires again a case
analysis. Let (Z,9) € R. Assume that either & or 7 is not in
E. Say & ¢ E (other case analogous). Then (z,y) € R for

all z € & and all y € ¢ (these attacks are in R’ and not in R,
since the latter only contains arguments outside F, implying

that their corresponding cluster is outside £). Assume that
{Z,4} C E. If & = § then consider the following two cases.

e If |&| = 1, then there is no (i, %) € R due to conflict-
freeness: if E is c¢fin F' then there are no attacks between
singletons within E in F'.

e If |Z| > 1, then F attacks #, which means that E N 7 =
{c.} (only the “chosen” argument is in E, not all, since

the clustered argument is attacked from E). But then there
isanx € & with x # ¢, s.t. (z,2) € R.

Consider the case that & # .

e If |Z] = || = 1 (both are singletons), then since both

are in E there is no attack between these two clustered
arguments (would contradict E being stb)

e If [j| = 1 and |#| > 1, then, by definition of stb we infer
that F attacks 2 in F' (otherwise the third condition of stb
would be violated). This implies that EN & = {c, }. This
means that there is an x € & with z # ¢, and (z,¢,) € R.

e If [§| > 1, then there is an y € § s.t. y # ¢, (note that E

attacks ¢/ in F'). Then (cz,y) € R. This case covers both
subcases with |Z| = 1 and |Z| > 1.

It remains to show that E' € stb(F'). First, E € ¢f(F): if
2 and y in F, then there is no (z,y) € R, since attacks
between members of E are removed via R. Let b € A and
b ¢ E. Consider two cases for the corresponding cluster
m(b) = b: () b € F and (ii) b ¢ E. In case (i), then b must
be attacked by an a € E (if unattacked or not attacked from
E then all of b are in E). Then (ca,b) € R (note thatb # ¢3).
In case (ii), there must be an & € E s.t. (4,0) € R. Then
(a,b) € R for a € a (including ¢,). Thus, E € stb(F'), and
m(E) = E € #(F). O

Proof of Proposition 3. For the first item, let a € F with
E € o(F). Then F' = ({A}, R’) under 6(F") = {0, {A}}
is faithful w.r.t. F under o, if m'(E) = A (if A = {a}
them a is unattacked in F’; otherwise there are at least two
arguments since F is conflict-free, which implies that clus-
tered argument { A} is non-singleton). For the second item,
let @ be a non-singleton cluster. It holds that {a} € &(F).
Due to faithfulness, we infer that there is an £ € o(F)



with m(E) = {a}. For the last item, if X € A, then
{X} € 6(F). This contradicts faithfulness. O

Proof of Corollary 4. Consider the negation of both state-
ments. The following holds (since an abstracting 6’ may not
include E if there is no corresponding AF including £). Let
ECE.
F = (A,R) s.t. m(F) = F and

VEC Ast.m(E)=FE:E ¢ o(F)

iff 35" abstracting o s.t. E ¢ &' (F)

iff £ ¢ 6(F)
As an example, 6" can be defined as Jpc,,-1 () m(o(F))
(exactly collectlng all mapped o-extensions for each F' that
maps to F). Since 6(F) is included in any 6'(F') if 6 ab-

stracts o (Theorem 2), we can infer the statement of the
corollary. O

Proof of Proposition 5. Consider the complementary prob-
lem: glven a clustered AF F according to m, a adm-
extension F, and an AF F with m(F) = F, verify that

there exists an E € adm(E) s.t. m(E) = E. For member-
ship in NP, consider a guess of E' and checking the condi-
tions. For hardness, we reduce from the problem of check-
ing satisfiability of a Boolean formula ¢ = c¢1 A -+ A ¢y
with clauses c; over vocabulary X. We use T to denote
a negated literal in a clause. We utilize a variant of the
standard construction for showing hardness for credulous
reasoning on AFs under admissibility. Let ' = (A, R)
be given by A = {2,T | z € X} U {c € C} U {g}
and R = {(z,7),(T,z) | = € X} U{(z,0) | z €
XUX,z € ¢,c € C}U{(e,q) | ¢ € C}. Further, let
m(z) = m(T) = & for each z € X, and each ¢ € C and
g mapped to themselves (i.e., we cluster {x,Z). Finally, set
E={q}U{z,Z | 2 € X}. We claim that ¢ is satisfiable iff
E is not spurious under admissibility. By previous results, it
holds that there is an admissible set £ € adm(F') containing
q iff ¢ is satisfiable. W.l.0.g., we can assume that E' contains
one of {z, T} for each z € X (F simulates a total truth value
assignment; admissible sets containing ¢ might not include
for each variable a corresponding argument, but then we can
extend such sets). It holds that F is not spurious iff there is
an E' € adm(E) with m(E') = E iff E’ contains . O

For showing Proposition 6, we make use of the following
result.

Proposition 1. Deciding whether some E € adm(F) ina

given clustered AF F with some a € E is spurious in show-
ing the credulous acceptance of a under admissibility w.r.t.
a given AF F is © -complete.

Proof. For membership in X4, some E containing a can
be guessed and checked by Proposition 5 with a coNP ora-
cle in polynomial time. The ¥%-hardness is shown by a re-
duction from evaluating a QBF ¢ = 3XVY E(X,Y) where

EX,)Y)= \/l 1 ¢i is a DNF of conjunctions ¢; = [;; A- - -A

li,, over vocabulary X and Y where without loss of gener-
ality in each ¢; some atom from Y occurs. Let F' = (A, R)
be given by A = {2,7,2' | 2 € X} U{y, 5,y | y €
Yiu{ce C}U{q}and R = {(z,Z) (T, x)(z,2") (T, 2") |
v e X}U{(yy)@wwy)my) [y e YIU{Eo0) |
z€ XUXUYUY,z € c,ec € CtU{(¢,q) | z €
X UY}U{(c,q) | c € C}. Further, let m(y) = m(y) =g
for each y € Y, and the rest of the arguments are mapped
to themselves. We claim that there exists a £ € adm(F)
containing ¢ which is spurious iff ¢ is satisfiable. Due to the
construction of f?', E should contain z or T for each x € X
and also the cluster § = {y,7}. When we try to build some

E € adm(F) to match E, the existence of x or T and picking
an assignment on ¥, % to match the cluster y will definitely
defend ¢ from the 2’ and 3y foreach x € X,y € Y. Thus the
spuriousness would have to occur due to some c not being
attacked (and thus ¢ not being defended) whenever an as-
signment is picked for y,y. This means that such a c is not
being attacked by x or =. Thus, we can conclude that in fact
¢ is satisfiable, since for the given assignment on X from
E we can pick any assignment on Y so that some conjunc-
tion is satisfied. The reverse is also easily seen, as we can
construct some £ according to the assignment on X which
satisfies ¢, which becomes spurious. O

Proof of Proposition 6. This result comes as a corollary of
Proposition 1. O

Proof of Proposition 8. Assume the conditions of the
proposition hold. Then m(c(F)) = 6(F) = m(o(F"))
(first item). Let E € o(F). Then there is an E' € o(F")
with m(E) = m(E’). Recall that we assumed that single-
tons map to themselves. This means that E NS C m(FE) =
m(E"), and also that E NS = m(FE) NS (all singletons
occurring in m(E) must be part of F). The same holds
for E': E'NS = m(F’). Then ENS = m(E)NS =
m(E’) NS = E'NS. The claim of the proposition (second
item) follows. O]

Proof of Proposition 9. We have a € A is credulously ac-
cepted in F under o iff there is an £ € o(F) witha € FE

iff there is an £ € 6(F) with a € F iff a is credulously
accepted in F' under 6. O

The proofs of Proposition 10, Proposition 11, and Propo-
sition 12 follow from the definition of semantics being ab-
stracting.



