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Proof Details
We give proofs of the formal statements in the paper.

Proof of Theorem 1. Let F = (A,R) be an AF, m a map-
ping on A, and F̂ = m(F ) be the clustered AF according to
m. Let E ∈ σ(F ). It remains to show that Ê = m(E) ∈
σ̂(F̂ ). For σ = cf, suppose Ê /∈ ĉf(F̂ ). By definition, there
are â and b̂ in single(Â) ∩ Ê s.t. (â, b̂) ∈ R̂. This implies
that there are a and b in E with m(a) = â and m(b) = b̂

and (a, b) ∈ R (since both â and b̂ are singleton clusters).
This contradicts E being conflict-free. We conclude that
Ê ∈ ĉf(F̂ ). For σ = adm, similarly as before suppose that
Ê /∈ ˆadm(F̂ ). By definition, either (i) Ê /∈ ĉf(F̂ ), or (ii)
there is an â ∈ single(Â) ∩ Ê with (b̂, â) ∈ R̂ s.t. there is
no ĉ ∈ Ê with (ĉ, b̂) ∈ R̂. If Ê /∈ ĉf(F̂ ), we arrive at a
contradiction as above (E would not be conflict-free). Sup-
pose (ii) holds. Then there is an a ∈ E with m(a) = â.
Since |â| = 1, it follows that there is a b ∈ b̂ s.t. (b, a) ∈ R
(one argument in the cluster must attack a). Since, by our
supposition, there is no ĉ ∈ Ê that attacks b̂ in F̂ , it follows
that there is no c ∈ E with (c, b) ∈ R (otherwise such a c
would be part of some cluster in Ê and the attack, as well).
This contradicts E /∈ adm(F ). We infer that Ê ∈ ˆadm(F̂ ).
For σ = stb, similarly as before suppose that Ê /∈ ˆstb(F̂ ).
As above, we can conclude that Ê ∈ ĉf(F̂ ). We show that
Ê satisfies the two remaining conditions of ˆstb extensions,
by supposing that they do not hold and deriving a contradic-
tion. Suppose there is a b̂ /∈ Ê and there is no â ∈ Ê with
(â, b̂) ∈ R̂. We directly arrive at a contradiction: there must
be a b ∈ b̂ s.t. b /∈ E and there is no a ∈ E with (a, b) ∈ R
(otherwise there would be an â ∈ Ê with (â, b̂) ∈ R̂). Fi-
nally, assume that Ê does not attack an â ∈ Ê. Suppose
that there is a b̂ ∈ single(Ê) and (â, b̂) ∈ R̂ (which would
contradict Ê being stable, third condition of ˆstb). If there
is no clustered argument in Ê that attacks â in F̂ then no
argument in E attacks any argument in â in F . Since E
is stable in F , this implies that â ⊆ E (all arguments in â
are not attacked by E and must then be part of E). Since
(â, b̂) ∈ R̂ and |b̂| = 1, we infer that one argument a ∈ â

attacks b̂ in F (one argument in â must attack b̂ since b̂ is a
singleton). Since the b̂ is a singleton and all of â are in E we
infer that E attacks b̂ in F . But then E is not conflict-free,
since b̂ ∈ Ê implies b̂ ∈ E, a contradiction. We infer that
Ê ∈ ˆstb(F̂ ).

Proof of Theorem 2. Let σ = cf. Suppose that there is an
Ê ∈ ĉf(F̂ ) and that Ê /∈ τ̂(F̂ ). We show that there is
an AF F with F ∈ m−1(F̂ ) and an E ∈ cf(F ) with
m(E) = Ê (contradicting the claim that τ̂ abstracts conflict-
free sets). Construct an AF F = (A,R) as follows. Let
A be the domain of m. Define R′ = {(x, y) | (x̂, ŷ) ∈
R̂, x ∈ m−1(x̂), y ∈ m−1(ŷ)} (i.e., R′ contains an attack
between x and y iff the corresponding clusters x̂ and ŷ at-
tack in R̂). For each â ∈ Â choose one ca ∈ â (recall
that we assume finite sets), and let E = {ca | â ∈ Ê}.
Define R = {(cx, cy) | cx, cy ∈ E}. Set R = R′ \ R
(i.e., we remove from R′ all attacks between arguments in
E). We show that m(F ) = F̂ . From construction we im-
mediately get m(A) = Â. For (x, y) ∈ R, we infer that
(m(x),m(y)) ∈ R̂: if (x, y) ∈ R then (x, y) ∈ R′, im-
plying that (m(x),m(y)) ∈ R̂. Thus, m(R) ⊆ R̂. Let
(x̂, ŷ) ∈ R̂. Consider first the case that x̂ 6= ŷ.

• If at most one of x̂ or ŷ is in Ê, it follows that for all x ∈ x̂
and y ∈ ŷ we have (x, y) ∈ R (this attack is in R′ and not
in R).

• Consider the case that both of x̂ or ŷ are in Ê. If {x̂, ŷ} ⊆
single(Â), then (x̂, ŷ) /∈ R̂ (since Ê ∈ ĉf(F̂ )). Consider
the case that one of x̂ or ŷ is a non-singleton cluster in F̂ ,
say |x̂| > 1. Then there is an x ∈ x̂ with x 6= cx. Let
y ∈ ŷ. It follows that (x, y) /∈ R, and, thus, (x, y) ∈ R.

If x̂ = ŷ (self-attack (x̂, x̂) ∈ R̂), then one can reason analo-
gously: if x̂ /∈ Ê, then for all x ∈ X̂ we have (x, x) ∈ R. If
x̂ ∈ Ê, then x̂ is not a singleton. Again there is some x ∈ x̂
with x 6= cx, and (x, x) ∈ R. We conclude that m(R) = R̂,
and, in turn, m(F ) = F̂ .

It remains to show that E ∈ cf(F ). Let x, y ∈ E. By con-
struction ofR it holds that (x, y) ∈ R, and, thus, (x, y) /∈ R.
Finally for conflict-free sets, m(E) = Ê, by construction.



Let σ = adm. Assume that Ê ∈ ˆadm(F̂ ). Suppose that
Ê /∈ τ̂(F̂ ). Construct an AF F = (A,R) in a similar fashion
as before. Let R′ be as in the proof for cf, and choose argu-
ments ca for â ∈ Â as before. Again, let E = {ca | â ∈ Ê}.
Define R1 = {(x, cy) | x ∈ A, |ŷ| > 1, cy ∈ E} (at-
tacks onto members of E whose cluster is non-singleton)
and R2 = {(cx, cy) | cx, cy ∈ E} (attacks inside E).
Let R = R′ \ (R1 ∪ R2). We again get immediately that
m(A) = Â. Let (x, y) ∈ R. Since (x, y) ∈ R′ we infer that
(m(x),m(y)) ∈ R̂, implying m(R) ⊆ R̂. Let (x̂, ŷ) ∈ R̂.
If ŷ /∈ Ê, it follows that for all x ∈ x̂ and y ∈ ŷ we have
(x, y) ∈ R. Let ŷ ∈ Ê. Consider the following subcases.

• x̂ ∈ Ê. Consider again subcases depending which is a
singleton cluster.
– |x̂| = 1 and |ŷ| = 1: if both clusters x̂ and ŷ are single-

tons in F̂ , then (x̂, ŷ) /∈ R̂ (since Ê ∈ ĉf(F̂ )).
– |x̂| > 1 and |ŷ| = 1: then for an x ∈ x̂ with x 6= cx,

and m(y) = ŷ, we have (x, y) ∈ R ((x, y) is not in R1

or R2).
– |x̂| = 1 and |ŷ| > 1: then for a y ∈ ŷ with y 6= cy , and
m(x) = x̂, we have (x, y) ∈ R ((x, y) is not in R1 or
R2).

– |x̂| > 1 and |ŷ| > 1: then for x ∈ x̂ and y ∈ ŷ we have
(x, y) ∈ R with x 6= cx and y 6= cy .

• x̂ /∈ Ê. Consider again subcases depending which is a
singleton cluster.
– |x̂| = 1 and |ŷ| = 1: then for x and y with m(x) = x̂

and m(y) = ŷ we have (x, y) /∈ R1 ∪R2.
– |x̂| > 1 and |ŷ| = 1: similar as the previous case (just

take an arbitrary x ∈ x̂).
– |x̂| = 1 and |ŷ| > 1: let y ∈ ŷ with y 6= cy and x s.t.
m(x) = x̂. It follows that (x, y) /∈ R1∪R2 (we choose
a different y ∈ ŷ than the one removed by R1).

– |x̂| > 1 and |ŷ| > 1: similar as the previous case.

Thus, R̂ ⊆ m(R), implying m(R) = R̂. It remains to show
that E ∈ adm(F ). It follows that E ∈ cf(F ) (similar ar-
guments as above). Suppose that E does not defend itself.
Then there is an a ∈ E with some (b, a) ∈ R such that
there is no c ∈ E with (c, b) ∈ R. If, for m(a) = â,
we have |â| > 1, then (b, a) /∈ R (since (b, a) ∈ R1).
If |â| = 1, then there is a b̂ with m(b) = b̂ such that
(b̂, â) ∈ R̂. This implies (by â ∈ Ê and Ê ∈ ˆadm(F̂ ))
that there is a ĉ ∈ Ê such that (ĉ, b̂) ∈ R̂. By construction,
cc ∈ E. Since (cc, b) /∈ R1 ∪ R2 (by b /∈ E), it follows that
(cc, b) ∈ R, contradicting that E /∈ adm(F ). It follows that
E ∈ adm(E), and m(E) = Ê ∈ τ̂(F̂ ).

Let σ = stb. Assume that Ê ∈ ˆstb(F̂ ). Suppose that
Ê /∈ τ̂(F̂ ). Construct an AF F = (A,R) in a similar fash-
ion as before. Let R′ be as in the proof for cf, and choose
arguments ca for â ∈ Â as before. Let E = {ca | â ∈
Ê} ∪ {x | x ∈ x̂, x̂ ∈ Ê s.t. @(ŷ, x̂) ∈ R̂ with ŷ ∈ Ê}
(include here also full clusters that are unattacked or only

attacked from outside Ê). Define R = {(x, y) | x, y ∈ E}.
SetR = R′\R (i.e., similar as in the proof for cf, we remove
from R′ all attacks between arguments in E; however note
that E is different). We now prove that m(F ) = F̂ holds.
We infer that m(A) = Â, by construction. First, similarly
as above, assume that (x, y) ∈ R. We have (x, y) ∈ R′.
Then (x̂, ŷ) ∈ R̂ for m(x) = x̂ and m(y) = ŷ. This implies
that m(R) ⊆ R̂. The other direction requires again a case
analysis. Let (x̂, ŷ) ∈ R̂. Assume that either x̂ or ŷ is not in
Ê. Say x̂ /∈ Ê (other case analogous). Then (x, y) ∈ R for
all x ∈ x̂ and all y ∈ ŷ (these attacks are in R′ and not in R,
since the latter only contains arguments outside E, implying
that their corresponding cluster is outside Ê). Assume that
{x̂, ŷ} ⊆ Ê. If x̂ = ŷ then consider the following two cases.

• If |x̂| = 1, then there is no (x̂, x̂) ∈ R̂ due to conflict-
freeness: if Ê is ĉf in F̂ then there are no attacks between
singletons within Ê in F̂ .

• If |x̂| > 1, then Ê attacks x̂, which means that E ∩ x̂ =
{cx} (only the “chosen” argument is in E, not all, since
the clustered argument is attacked from Ê). But then there
is an x ∈ x̂ with x 6= cx s.t. (x, x) ∈ R.

Consider the case that x̂ 6= ŷ.

• If |x̂| = |ŷ| = 1 (both are singletons), then since both
are in Ê there is no attack between these two clustered
arguments (would contradict Ê being ˆstb).

• If |ŷ| = 1 and |x̂| > 1, then, by definition of ˆstb we infer
that Ê attacks x̂ in F̂ (otherwise the third condition of ˆstb
would be violated). This implies that E ∩ x̂ = {cx}. This
means that there is an x ∈ x̂with x 6= cx and (x, cy) ∈ R.

• If |ŷ| > 1, then there is an y ∈ ŷ s.t. y 6= cy (note that Ê
attacks ŷ in F̂ ). Then (cx, y) ∈ R. This case covers both
subcases with |x̂| = 1 and |x̂| > 1.

It remains to show that E ∈ stb(F ). First, E ∈ cf(F ): if
x and y in E, then there is no (x, y) ∈ R, since attacks
between members of E are removed via R. Let b ∈ A and
b /∈ E. Consider two cases for the corresponding cluster
m(b) = b̂: (i) b̂ ∈ Ê and (ii) b̂ /∈ Ê. In case (i), then b̂ must
be attacked by an â ∈ Ê (if unattacked or not attacked from
Ê then all of b̂ are inE). Then (ca, b) ∈ R (note that b 6= cb).
In case (ii), there must be an â ∈ Ê s.t. (â, b̂) ∈ R̂. Then
(a, b) ∈ R for a ∈ â (including ca). Thus, E ∈ stb(F ), and
m(E) = Ê ∈ τ̂(F̂ ).

Proof of Proposition 3. For the first item, let a ∈ E with
E ∈ σ(F ). Then F̂ ′ = ({A}, R̂′) under σ̂(F̂ ′) = {∅, {A}}
is faithful w.r.t. F under σ, if m′(E) = A (if A = {a}
them a is unattacked in F ; otherwise there are at least two
arguments since E is conflict-free, which implies that clus-
tered argument {A} is non-singleton). For the second item,
let â be a non-singleton cluster. It holds that {â} ∈ σ̂(F̂ ).
Due to faithfulness, we infer that there is an E ∈ σ(F )



with m(E) = {â}. For the last item, if X ∈ Â, then
{X} ∈ σ̂(F̂ ). This contradicts faithfulness.

Proof of Corollary 4. Consider the negation of both state-
ments. The following holds (since an abstracting σ̂′ may not
include Ê if there is no corresponding AF including E). Let
Ê ⊆ Ê.

∀F = (A,R) s.t. m(F ) = F̂ and

∀E ⊆ A s.t. m(E) = Ê : E /∈ σ(F )

iff ∃σ̂′ abstracting σ s.t. Ê /∈ σ̂′(F̂ )

iff Ê /∈ σ̂(F̂ )

As an example, σ̂′ can be defined as
⋃

F∈m−1(F̂ )m(σ(F ))

(exactly collecting all mapped σ-extensions for each F that
maps to F̂ ). Since σ̂(F̂ ) is included in any σ̂′(F̂ ) if σ̂′ ab-
stracts σ (Theorem 2), we can infer the statement of the
corollary.

Proof of Proposition 5. Consider the complementary prob-
lem: given a clustered AF F̂ according to m, a ˆadm-
extension Ê, and an AF F with m(F ) = F̂ , verify that
there exists an E ∈ adm(E) s.t. m(E) = Ê. For member-
ship in NP, consider a guess of E and checking the condi-
tions. For hardness, we reduce from the problem of check-
ing satisfiability of a Boolean formula φ = c1 ∧ · · · ∧ cn
with clauses ci over vocabulary X . We use x to denote
a negated literal in a clause. We utilize a variant of the
standard construction for showing hardness for credulous
reasoning on AFs under admissibility. Let F = (A,R)
be given by A = {x, x | x ∈ X} ∪ {c ∈ C} ∪ {q}
and R = {(x, x), (x, x) | x ∈ X} ∪ {(z, c) | z ∈
X ∪ X, z ∈ c, c ∈ C} ∪ {(c, q) | c ∈ C}. Further, let
m(x) = m(x) = x̂ for each x ∈ X , and each c ∈ C and
q mapped to themselves (i.e., we cluster {x, x). Finally, set
Ê = {q}∪ {x, x | x ∈ X}. We claim that φ is satisfiable iff
Ê is not spurious under admissibility. By previous results, it
holds that there is an admissible setE ∈ adm(F ) containing
q iff φ is satisfiable. W.l.o.g., we can assume that E contains
one of {x, x} for each x ∈ X (E simulates a total truth value
assignment; admissible sets containing q might not include
for each variable a corresponding argument, but then we can
extend such sets). It holds that Ê is not spurious iff there is
an E′ ∈ adm(E) with m(E′) = Ê iff E′ contains q.

For showing Proposition 6, we make use of the following
result.
Proposition 1. Deciding whether some Ê ∈ ˆadm(F̂ ) in a
given clustered AF F̂ with some a ∈ Ê is spurious in show-
ing the credulous acceptance of a under admissibility w.r.t.
a given AF F is ΣP

2 -complete.

Proof. For membership in ΣP
2 , some Ê containing a can

be guessed and checked by Proposition 5 with a coNP ora-
cle in polynomial time. The Σ2

P -hardness is shown by a re-
duction from evaluating a QBF φ = ∃X∀Y E(X,Y ) where
E(X,Y ) =

∨k
i=1 ci is a DNF of conjunctions ci = li1∧· · ·∧

lini
over vocabulary X and Y where without loss of gener-

ality in each ci some atom from Y occurs. Let F = (A,R)
be given by A = {x, x, x′ | x ∈ X} ∪ {y, y, y′ | y ∈
Y } ∪ {c ∈ C} ∪ {q} and R = {(x, x)(x, x)(x, x′)(x, x′) |
x ∈ X} ∪ {(y, y)(y, y)(y, y′)(y, y′) | y ∈ Y } ∪ {(z, c) |
z ∈ X ∪ X ∪ Y ∪ Y , z ∈ c, c ∈ C} ∪ {(z′, q) | z ∈
X ∪ Y } ∪ {(c, q) | c ∈ C}. Further, let m(y) = m(y) = ŷ
for each y ∈ Y , and the rest of the arguments are mapped
to themselves. We claim that there exists a Ê ∈ ˆadm(F̂ )
containing q which is spurious iff φ is satisfiable. Due to the
construction of F̂ , Ê should contain x or x for each x ∈ X
and also the cluster ŷ = {y, y}. When we try to build some
E ∈ adm(F ) to match Ê, the existence of x or x and picking
an assignment on y, y to match the cluster ŷ will definitely
defend q from the x′ and y′ for each x ∈ X, y ∈ Y . Thus the
spuriousness would have to occur due to some c not being
attacked (and thus q not being defended) whenever an as-
signment is picked for y, y. This means that such a c is not
being attacked by x or x. Thus, we can conclude that in fact
φ is satisfiable, since for the given assignment on X from
Ê we can pick any assignment on Y so that some conjunc-
tion is satisfied. The reverse is also easily seen, as we can
construct some Ê according to the assignment on X which
satisfies φ, which becomes spurious.

Proof of Proposition 6. This result comes as a corollary of
Proposition 1.

Proof of Proposition 8. Assume the conditions of the
proposition hold. Then m(σ(F )) = σ̂(F̂ ) = m(σ(F ′))
(first item). Let E ∈ σ(F ). Then there is an E′ ∈ σ(F ′)
with m(E) = m(E′). Recall that we assumed that single-
tons map to themselves. This means that E ∩ S ⊆ m(E) =
m(E′), and also that E ∩ S = m(E) ∩ S (all singletons
occurring in m(E) must be part of E). The same holds
for E′: E′ ∩ S = m(E′). Then E ∩ S = m(E) ∩ S =
m(E′) ∩ S = E′ ∩ S. The claim of the proposition (second
item) follows.

Proof of Proposition 9. We have a ∈ A is credulously ac-
cepted in F under σ iff there is an E ∈ σ(F ) with a ∈ E
iff there is an Ê ∈ σ̂(F̂ ) with a ∈ Ê iff a is credulously
accepted in F̂ under σ̂.

The proofs of Proposition 10, Proposition 11, and Propo-
sition 12 follow from the definition of semantics being ab-
stracting.


